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Abstract - The attempt of this simulation study was to test the capability of the Virtual Manipulator (VM) ideas as originally proposed 

by Vafa and Dubowsky, (1987, 1988, 1990). It was observed that the base-fixed manipulator’s dynamic formulations are not suitable 

for the space manipulator consideration. The dynamic problems of the space manipulator requires a unique solution to be undertaken. 

The dynamic formulations for these systems are complex. Several simulation tests were performed over the free-floating space robotics 

system, whereby the spacecraft’s angular velocity was fixed. The most beneficial knowledge of this simulation test was the total 

understanding of the dynamic behavior of these systems that comprises of space manipulator and the space platform. It appears that 

the proposed Virtual Manipulator concepts had further enhanced the understanding of space manipulator systems. 
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I.  INTRODUCTION 

he control of space manipulators poses planning and 

control problems that are not found in terrestrial fixed-

base manipulators due to the dynamic coupling of space 

manipulators and its spacecraft. There have been several 

control techniques that has been proposed by previous 

researchers, which can be subdivided into three categories. In 

the first category, the spacecraft position and attitude are 

controlled by reaction jets to compensate for any manipulator 

dynamics forces exerted on the spacecraft. In this case, the 

control laws for earth-bound manipulators can be used. 
However, the utility of such systems can be limited. This is 

because the manipulator’s motions can both saturate the 

reaction jet system and consume relatively large amount of 

attitude control flue, limiting the usefulness of the system [1]. 

In the second category, the spacecraft attitude is controlled, 

using reaction wheels or attitude control jets in a non-

translation manner [2][3][4]. The control problem of these 

systems can be simplified using the Virtual Manipulator (MV) 

technique [4][5]. The third proposed category assumes a free-

floating system in order to conserve fuel or electrical power 

[5][7]. Such a system permits the spacecraft to move freely in 

response to manipulator motions. This mode becomes feasible 
when no external forces and torques act on the system, and 

when its total momentum is negligible, since the spacecraft’s 

attitude control system does not operate during this mode of 

space manipulation. In practice, momentum dump maneuvers 

would be employed to remove any momentum that may 

accumulate [8][9]. In this light, two identification methods for 

space robots can be used. In the first method the space robot 

manipulators can be considered on an inertial fixed base [10]. 

The dynamic parameters of these space robots can be 

determined from the relations between motions of a 

manipulator and applied joint forces and/or torques. In the 

second method, a novel identification method for space robots 

can be proposed which can freely move in both translational 
and rotational directions. This method is based upon the 

conservation laws of linear and angular momentum of a space 

robot. In a free-flying space manipulator system, and during 

the activity of its manipulator, the position and attitude of the 

system's spacecraft is controlled actively by reaction jets. The 

free-floating space robotic system is one in which the 

spacecraft's position and attitude are not actively controlled 

during manipulator activity to conserve attitude control fuel.   

 

    In cases  where there are external forces and torques acting 

on the system, such as forces caused by reaction jets or by 
contact with external object the VB will accelerate and change 

its position in inertial space. The VB accelerations are 

proportional to the external forces on the 

manipulator/spacecraft. The forces and torques will also rotate 

the system about the center of mass. The systems considered 

are assumed to be free-floating, and hence the virtual 

manipulator base will be a VG as shown in Fig. 1.  
  

II.  DYNAMIC OF BASE-FIXED MANIPULATOR 

     Kinematic and kinetic (dynamic) characteristics of a 

manipulator will have a major influence on the base-fixed 

manipulator operation. The physical and geometric parameters 

such as masses, moments of inertias and link dimensions are 

used to identify the dynamics parameters of a base-fixed 

robot. The equation of motion of free-floating systems with no 

external forces or moments can be formulated as, 

        M q q h q q ,                                              (1) 
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where   M q q  is the inertia matrix and  h q q,   is the 

centrifugal and Coriolis term. 

        The dynamic analysis of a base-fixed manipulator can be 

achieved by considering a satellite base fixed on an inertial 

foundation with two links of the manipulator moving in a 

plane. The first and second joint angles are denoted as 

q q q T ( , )1 2  and its corresponding joint torques as 

   ( , )1 2
T

. The superscript T indicates the transpose of a 

vector. Again by adding the  joint frictional resistant torque 

the dynamic equations of motion of the manipulator can be re-

described as follows: 

 

 M q q h q q f f( ) ( , )                             (2) 

where           
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is the inertial matrix of the manipulator. The vector h q q( , )  

represents the centrifugal and Coriolis' forces: 
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The vector f f  is the joint frictional resistant torque defined 

as 
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     The first term of the right hand side of the equation denotes 

viscous damping torques and the second term the Coulomb 

damping torques m m mc11 22,   and  which  are the dynamic 

parameters of the manipulator. Note that the f f fv v c1 2 1, ,

and fc2   are the frictional parameters.  

  

       In the analysis, the base reactions of a space manipulator 

are directly transmitted to the supporting structure, which is 

generally part of the space vechicle or space station. These 

base reaction forces are in fact disturbance that can have 

significant adverse effects on the control and performance of 

the space robot. Clearly, it is not trivial to take into account 

the reaction force on the space structure in the associated 

control schemes. Furthermore, since the coupling between the 

manipulator and the space structure is dynamic in nature, the 
performance of the manipulator will also be affected by these 

dynamic interactions. It follows that, ideally, one would desire 

zero base reactions for robot manipulators used in space 

applications.  

III.  DYNAMIC OF FREE-FLOATING SPACE ROBOTS 

        Consider a platform/manipulator system as shown in Fig. 

1. Suppose there are no external forces acting on the system, 

the system CM does not accelerate, and the system linear 

momentum is constant, i.e., 
0 0rcm  . With the further 

assumption of zero initial momentum, the system CM remains 

fixed in inertial space, and can be taken as the origin of a fixed 

frame of reference. 

 

 

Fig. 1. Satellite platform and the manipulator arm. 

 

      The spacecraft’s initial position and orientation in body 

fixed axes are Xb
Tx y z [ , , ] , and b

T [ , , ]    

respectively. The manipulator joint angles are 

q q q qn
T [ , ,..., ]1 2 . Infinitesimal changes in the 

spacecraft’s attitude measured with respect to its body-fixed 

axes, b , can be expressed as a function of infinitesimal 

manipulator joint motions, q , as  b q qG( ) , where G 

is a 3 by N disturbance sensitivity matrix [1]. The vector b  

is defined as the instantaneous disturbance.  

         The end-effector inertial linear and angular velocities, 

rE , and, E  are functions of the joint rates q  and of the 

spacecraft angular velocity, 
0

0 , as, 

[  , ] *r J qE E

T                                                 (6) 

 The conservation of angular momentum is, 
o

qD D q0

0 1 0                                               (7) 

where 
0D is the 3 by 3 system inertia matrix with respect to 

the system CM, and as such it is a positive definite symmetric 

matrix. The 
0Dq  is a 3 by N matrix. The matrices 

0D and 

0Dq  are the functions of the configuration q. The inverse of 

0D always exist because the system inertia matrix is positive 

definite. Equation (7) can be used to express 
o0 , from  

v J v rE E

T

E

T T  [  , ]                                (8) 

where vE  is the end-effector velocity and J   is the 6 by N+6 

nonsquare matrices, even when N=6. Again, 
o0  is a 

function of  q , which can be used to derive a free-floating 

system’s Jacobian J*
, defined by,  

[  , ] *r J qE E

T                                      (9) 

where J*
 is a 6xN matrix given by, 
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J q T T J qs s s
* *( , ) ( ( ), ( ) ) ( )   diag 0 0

0
            (10)                                                            

Since Eq. (6) was used in constructing J*
, this Jacobian 

depends not only on the kinematic properties of the system, 

but also on configuration dependent inertias. Therefore, the 

singular configuration for a free-floating system, i.e., ones in 

which 
0J*

 has rank less than six, are not the same to the ones 
for fixed based systems, as they depend on the mass 

distribution.  

       The equations of motion for a free-floating system can be 

found either using a Lagrangian approach or by setting all 

external forces and moments equal to zero. The resulting 

equation becomes, 

      M q q h q q ,                        (11) 

where M q q D D D Dq q

T

q( )()        0 0 0 1 0
 is the reduced 

system inertia matrix, and  h q q,   contains the non-linear 

centrifugal and Coriolis terms. The vector   is the 

manipulator joint force/torque vector [ , ,...., ]  1 1 N
T

. 

Therefore, M q q( )()  is the N x N positive definite symmetric 

inertia matrix, which depends on q and the system mass 

properties, as defined in Eq. (3). 

IV.  SIMULATION RESULTS 

      A simulation study was conducted by considering the 

Puma 560 robot structure shown in Table 1. The VM to an 

arbitrary point on the real manipulator body, and  end-effector 

VM coincide with the real manipulator end-effector. These 

VM constructions enable the dynamic motions of a space 

manipulator system to be described by the motions of its 

Virtual Manipulator representation that has its base at the VG. 
 

TABLE I  

The Puma 560 robot’s parameter. 

i qi ai 

(cm) 

ai 

(deg

) 

di 

(cm) 

Rotor 

Inertia 

(kgm2 ) 

Mi 

(Kg) 

1 var 0 -90 60 2.5x10-2 1.5 

2 var 175 0 0 2.5x10-3 1.3 

3 var 266 0 0 2.5x10-3 1.2 

4 var 0 90 0 1.5x10-4  0.25 

5 var 20 0 -55 1.5x10-4  0.12 

6 var 0 90 0 7.8x10-5  0.05 

  

   The systems Jacobian can be calculated from the Eq. (9) as, 

  [ , , ] *x r
d

dt
x y z J qE

T                                           (12)                                                                

where, x r x y zE

T  [ , , ]  and 

q q q q q q q T [ , , , , , ]1 2 3 4 5 6  

Thus the J*
 is,                                   

J q T J q* *( , ) ( ) ( )  0
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             (13)                                                            

The transformation matrices 
0Ti  are found according to, 
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Finally the system Jacobian J*
 is, 
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where 
0D j  are the inertia matrices corresponding to the 

scalars 
0dij  for the planar robot. Thus, the matrices can be 

given by, 

0 0
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Finally, from the above Eqs. (13 – 16), the system Jacobian 

J*
 is assembled. 

      To demonstrate this space robot dynamic algorithm, the 

manipulator end-point is commanded to reach the workspace 
point (200cm, 340cm, 100cm) starting from the initial location 

of (100cm, 300cm, 300cm) with initial attitude of joint angles. 

A constant spacecraft angular velocity was considered at the 

rate of 100 cm/sec. The simulated control algorithm calculates 

the end-effector inertial position and velocity, x  and x , by 

using the control law, 

   J K x x K xT

p d

* { ( ) }des                     (17) 

Where, x represents the Cartesian location of the end-effector, 

and, xdes  is the inertial desired point location. The gain 

matrices Kp  and Kd  are diagonal. Note that this algorithm 

will specify the desired end-effector location. The path of the 

end-effector to the desired location is not specified in advance. 

If the control gains are large enough, then the motion of the 

end-point will be a straight line. The torque vector   is 

nonzero until the ( )x xdes   and x  are zero with the vector 

in the brackets of Eq. (17) being in the null space of J T*
. In 

this space robot dynamic simulations test the control gain 

matrices used are  Kp  Diag( , , , , , )25 25 25 5 5 5  and 

Kd  diag( , , , , , )100 80 60 30 10 10 . 
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Fig. 2(a,b,c). The force/torque profile of joints 1, 2 and 3 

             

                         

Joint # 4
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Fig. 3(a,b,c). The force/torque profile of joints 4,5 and 6 

      The initial joint position of the space manipulator was 

( , , , , , )0 90 90 0 0 00 0 0 0 0 0 , which reaches the 

commanded position with the following configuration of 

( , , , , , )10 30 15 50 45 250 0 0 0 0 0   . The control gain 

matrices parameters Kp  and Kd  has significant effects on 

the final force/torque value. The space manipulator’s system 

Jacobian was calculated with consideration of the spacecraft 

angular velocity. The Fig. 2(a,b,c) and Fig. 3(a,b,c) shows the 

force/torque profiles of the six joints. 

V.  CONCLUSION 

The attempt of this simulation study was to test the 

capability of the Virtual Manipulator (VM) ideas as originally 
proposed by Vafa and Dubowsky [1][7]. It was observed that 

the base-fixed manipulator’s dynamic formulations are not 

suitable for the space manipulator consideration. The dynamic 

problems of the space manipulator requires a unique solution 

to be undertaken. The dynamic formulations for these systems 

are complex. Several simulation tests were performed over the 

free-floating space robotics system, whereby the spacecraft’s 

angular velocity was fixed. The most beneficial knowledge of 

this simulation test was the total understanding of the dynamic 

behaviour of these systems. It appears that the proposed 

Virtual Manipulator concepts had further enhanced the 

understanding of space manipulator systems.   
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