Previous Page  19 / 68 Next Page
Information
Show Menu
Previous Page 19 / 68 Next Page
Page Background

S

xy

=

n

i

=1

x

i

y

i

n

i

=1

x

i

n

i

=1

y

i

n

S

xx

=

n

i

=1

x

i

2

n

i

=1

x

i

2

n

S

yy

=

n

i

=1

y

i

2

n

i

=1

y

i

2

n

ˆ

y

= ˆ

β

0

+ ˆ

β

1

x

where

ˆ

β

1

=

S

xy

S

xx

and

ˆ

β

0

= ¯

y

ˆ

β

1

¯

x

Hypothesis testing for intercept,

β

0

Hypothesis testing for slope,

β

1

For

β

0

= 0

,

For

β

1

= 0

,

t

test

=

ˆ

β

0

β

0

se

( ˆ

β

0

)

=

ˆ

β

0

MS

Res

(

1

n

+

¯

x

2

S

xx

)

t

α,ν

t

test

=

ˆ

β

1

β

1

se

( ˆ

β

1

)

=

ˆ

β

1

MS

Res

(

1

S

xx

)

t

α,ν

where

ν

=

n

2

SS

R

= ˆ

β

1

S

xy

MS

Res

=

S

yy

ˆ

β

1

S

xy

n

2

Goodness of Fit Test

Expected Frequency:

χ

2

test

=

k

i

=1

(

O

i

E

i

)

2

E

i

χ

2

α,ν

E

i

=

np

i

free distribution:

ν

=

k

1

where

p

i

is a probability for

i

= 1

, . . . , k

hypothesised distribution:

ν

=

k

m

1

Test of Contingency Tables

E

ij

=

n

i.

n

.j

n

..

χ

2

test

=

r

i

=1

c

j

=

i

(

O

ij

E

ij

)

2

E

ij

χ

2

α,ν

where

ν

= (

r

1)(

c

1)

9

Statistical Tables and Formulae 2.0