Previous Page  16 / 68 Next Page
Information
Show Menu
Previous Page 16 / 68 Next Page
Page Background

For

σ

2

1

=

σ

2

2

,

For

σ

2

1

=

σ

2

2

,

x

1

¯

x

2

)

±

t

α/

2

s

p

1

n

1

+

1

n

2

t

test

=

x

1

¯

x

2

)

µ

0

s

p

1

n

1

+

1

n

2

t

α,ν

where

ν

=

n

1

+

n

2

2

and

s

p

=

(

n

1

1)

s

2

1

+ (

n

2

1)

s

2

2

n

1

+

n

2

2

Confidence Interval for

µ

D

Hypothesis testing for

µ

D

¯

x

D

z

α/

2

σ

D

n

,

¯

x

D

+

z

α/

2

σ

D

n

z

test

=

¯

x

D

µ

D

σ

D

/

n

z

α

¯

x

D

z

α/

2

s

D

n

,

¯

x

D

+

z

α/

2

s

D

n

z

test

=

¯

x

D

µ

D

s

D

/

n

z

α

¯

x

D

t

α/

2

s

D

n

,

¯

x

D

+

t

α/

2

s

D

n

t

test

=

¯

x

D

µ

D

s

D

/

n

t

α,ν

where

ν

=

n

1

Confidence intervals for

π

Hypothesis testing for

π

p

z

α/

2

p

(1

p

)

n

, p

+

z

α/

2

p

(1

p

)

n

z

test

=

p

π

0

π

0

(1

π

0

)

n

z

α

Confidence intervals for

π

1

π

2

Hypothesis testing for

π

1

π

2

(

p

1

p

2

)

±

z

α/

2

p

1

(1

p

1

)

n

1

+

p

2

(1

p

2

)

n

2

For

π

0

= 0

,

z

test

=

(

p

1

p

2

)

π

0

π

1

(1

π

1

)

n

1

+

π

2

(1

π

2

)

n

2

z

α

For

π

0

= 0

,

z

test

=

(

p

1

p

2

)

π

0

p

p

(1

p

p

)

1

n

1

+

1

n

2

z

α

where

p

p

=

x

1

+

x

2

n

1

+

n

2

6

Statistical Tables and Formulae 2.0