Previous Page  13 / 68 Next Page
Information
Show Menu
Previous Page 13 / 68 Next Page
Page Background

Probability Mass Function for Discrete Variables

Binomial distribution,

Bin

(

x

;

n, p

)

:

P

(

X

=

x

) =

n

x

p

x

(1

p

)

n

x

where

x

= 0

,

1

, . . . , n

Poisson distribution,

Po

(

x

;

λ

)

:

P

(

X

=

x

) =

e

λ

λ

x

x

!

where

x

= 0

,

1

,

2

, . . .

Hypergeometric distribution,

H

(

x

;

N, n, k

)

:

P

(

X

=

x

) =

N

k

n

x

k

x

N

n

where

x

= 0

,

1

,

2

, . . . , n

and

max(0

, k

+

n

N

)

x

min(

n, k

)

Geometric distribution,

Geom

(

x

;

p

)

:

P

(

X

=

x

) =

p

(1

p

)

x

1

where

x

= 1

,

2

,

3

, . . .

Negative Binomial distribution,

Bin

(

x

;

r, p

)

:

P

(

X

=

x

) =

x

1

r

1

p

r

(1

p

)

x

r

where

x

=

r, r

+ 1

, r

+ 2

, . . .

Probability Density Function for Continuous Variables

Normal distribution,

N

(

x

;

µ, σ

2

)

:

f

(

x

) =

1

σ

2

π

exp

(

x

µ

)

2

2

σ

2

where

− ∞

< x <

t

distribution,

t

(

x

; Γ

, ν

)

:

f

(

x

) =

Γ

ν

+1

2

πν

Γ

ν

2

1 +

x

2

ν

ν

+1

2

where

− ∞

< x <

Chi-Squared distribution,

χ

2

(

x

; Γ

, k

)

:

f

(

x

) =

x

(

k/

2)

1

exp

x

2

2

(

k/

2)

Γ

k

2

where

x

0

F

distribution,

f

(

x

;

ν

1

, ν

2

)

:

f

(

x

) =

1

β

ν

1

2

,

ν

2

2

ν

1

ν

2

ν

1

2

x

(

ν

1

/

2)

1

1 +

ν

1

ν

2

x

ν

1 +

ν

2

2

where

x

0

3

Statistical Tables and Formulae 2.0