Previous Page  15 / 68 Next Page
Information
Show Menu
Previous Page 15 / 68 Next Page
Page Background

Inferential Statistics

Confidence intervals for

µ

Hypothesis testing for

µ

¯

x

z

α/

2

σ

n

,

¯

x

+

z

α/

2

σ

n

z

test

=

¯

x

µ

0

σ/

n

z

α

¯

x

z

α/

2

s

n

,

¯

x

+

z

α/

2

s

n

z

test

=

¯

x

µ

0

s/

n

z

α

¯

x

t

α/

2

s

n

,

¯

x

+

t

α/

2

s

n

t

test

=

¯

x

µ

0

s/

n

t

α,ν

where

ν

=

n

1

Confidence intervals for

µ

1

µ

2

Hypothesis testing for

µ

1

µ

2

x

1

¯

x

2

)

±

z

α/

2

σ

2

1

n

1

+

σ

2

2

n

2

z

test

=

x

1

¯

x

2

)

µ

0

σ

2

1

n

1

+

σ

2

2

n

2

z

α

For

σ

2

1

=

σ

2

2

,

For

σ

2

1

=

σ

2

2

,

x

1

¯

x

2

)

±

z

α/

2

s

2

1

n

1

+

s

2

2

n

2

z

test

=

x

1

¯

x

2

)

µ

0

s

2

1

n

1

+

s

2

2

n

2

z

α

For

σ

2

1

=

σ

2

2

,

For

σ

2

1

=

σ

2

2

,

x

1

¯

x

2

)

±

t

α/

2

s

2

1

n

1

+

s

2

2

n

2

t

test

=

x

1

¯

x

2

)

µ

0

s

2

1

n

1

+

s

2

2

n

2

t

α,ν

where

ν

=

s

2

1

n

1

+

s

2

2

n

2

2

s

2

1

n

1

2

n

1

1

+

s

2

2

n

2

2

n

2

1

For

σ

2

1

=

σ

2

2

,

For

σ

2

1

=

σ

2

2

,

x

1

¯

x

2

)

±

z

α/

2

s

p

1

n

1

+

1

n

2

z

test

=

x

1

¯

x

2

)

µ

0

s

p

1

n

1

+

1

n

2

z

α

5

Statistical Tables and Formulae 2.0